EconPapers    
Economics at your fingertips  
 

Polynomial Moving Regression Band Stocks Trading System

Gil Cohen ()
Additional contact information
Gil Cohen: The Management Department, Western Galilee College, Acre 2412101, Israel

Risks, 2024, vol. 12, issue 10, 1-15

Abstract: In this research, we attempted to fit a trading system based on polynomial moving regression bands (MRB) to Nasdaq100 stocks from 2017 till the end of March 2024. Since stocks movement does not follow a linear behavior, we used multiple degree polynomial regression models to identify the stocks’ trends and two standard deviations from the regression model to generate the trading signals. This way, the MRB was transformed into a momentum indicator designed to identify strong uptrends that can be used by a fully automated trading system. Our results indicate that the behavior of Nasdaq100 stocks can be tracked using all three examined polynomial models and can be traded profitably using fully automated systems based on those models. The best performing model was the model that used a four-degree polynomial MRB achieving the highest average net profit (USD 162.73). Regarding the risks involved, the third model has the lowest loss in dollar value (USD −95.52), and the highest minimum percent of profitable trades (41.51%) and profit factor (0.55) that indicates that this strategy is relatively less risky than the other two strategies.

Keywords: polynomial; trading; stocks; systems (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-9091/12/10/166/pdf (application/pdf)
https://www.mdpi.com/2227-9091/12/10/166/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:12:y:2024:i:10:p:166-:d:1501479

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jrisks:v:12:y:2024:i:10:p:166-:d:1501479