EconPapers    
Economics at your fingertips  
 

Study on the Nonlinear Volatility Correlation Characteristics Between China’s Carbon and Energy Markets

Tian Zhang () and Shaohui Zou
Additional contact information
Tian Zhang: School of Finance and Trade, Wenzhou Business College, Wenzhou 325035, China
Shaohui Zou: School of Management, Xi’an University of Science and Technology, Xi’an 710054, China

Risks, 2025, vol. 13, issue 10, 1-18

Abstract: The energy sector, as a major source of carbon emissions, has a significant impact on the operation of the carbon market and the management of carbon emissions. With the introduction of the “dual carbon” goals, the Chinese government has actively implemented measures to reduce carbon emissions, making the carbon market an important tool for emission reduction. Therefore, characterizing the inter-market relationships helps enhance decision-making for market participants and promotes sustainable economic development. This study selects the price of the Chinese carbon emission trading market, which began trading on 16 July 2021, as a representative of the carbon market price. In terms of energy market selection, the prices of electricity, new energy, and coal are chosen as representatives of the energy market. From the perspective of the nonlinear dependency structure between market prices, a “carbon ↔ electricity ↔ new energy ↔ coal market” multi-to-multi interaction model is constructed, and the MSVAR model is employed to study the nonlinear dependency characteristics between market prices under interactive influences. The results show that there is a significant nonlinear dependency structure between the four market prices, especially between the carbon market and the new energy market. These market prices exhibit different behavioral characteristics under different states, with non-stationary states being the most common. There is a strong positive correlation between the electricity market and new energy market prices, while the relationship between the carbon market and other market prices is relatively weaker. The relevant conclusions provide valuable insights for policymakers and investors, helping them better understand and predict future market dynamics.

Keywords: carbon market; electricity market; new energy market; coal market; nonlinear dependency structure; MSVAR model (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-9091/13/10/205/pdf (application/pdf)
https://www.mdpi.com/2227-9091/13/10/205/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:13:y:2025:i:10:p:205-:d:1773907

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-18
Handle: RePEc:gam:jrisks:v:13:y:2025:i:10:p:205-:d:1773907