EconPapers    
Economics at your fingertips  
 

SHAP Stability in Credit Risk Management: A Case Study in Credit Card Default Model

Luyun Lin and Yiqing Wang ()
Additional contact information
Luyun Lin: Independent Researcher, 1850 Mercer Parkway, Dallas, TX 75204, USA
Yiqing Wang: Independent Researcher, 1850 Mercer Parkway, Dallas, TX 75204, USA

Risks, 2025, vol. 13, issue 12, 1-16

Abstract: The rapid growth of the consumer credit card market has introduced substantial regulatory and risk management challenges. To address these challenges, financial institutions increasingly adopt advanced machine learning models to improve default prediction and portfolio monitoring. However, the use of such models raises additional concerns regarding transparency and fairness for both institutions and regulators. In this study, we investigate the consistency of Shapley Additive Explanations (SHAPs), a widely used Explainable Artificial Intelligence (XAI) technique, through a case study on credit card probability-of-default modeling. Using the Default of Credit Card dataset containing 30,000 consumer credit accounts information, we train 100 Extreme Gradient Boosting (XGBoost) models with different random seeds to quantify the consistency of SHAP-based feature attributions. The results show that the feature SHAP stability is strongly associated with feature importance level. Features with high predictive power tend to yield consistent SHAP rankings (Kendall’s W = 0.93 for the top five features), while features with moderate contributions exhibit greater variability (Kendall’s W = 0.34 for six mid-importance features). Based on these findings, we recommend incorporating SHAP stability analysis into model validation procedures and avoiding the use of unstable features in regulatory or customer-facing explanations. We believe these recommendations can help enhance the reliability and accountability of explainable machine learning framework in credit risk management.

Keywords: credit risk management; explainable AI; Shapley value (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-9091/13/12/238/pdf (application/pdf)
https://www.mdpi.com/2227-9091/13/12/238/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:13:y:2025:i:12:p:238-:d:1809940

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-12-10
Handle: RePEc:gam:jrisks:v:13:y:2025:i:12:p:238-:d:1809940