EconPapers    
Economics at your fingertips  
 

Deciphering the Risk–Return Dynamics of Pharmaceutical Companies Using the GARCH-M Model

Arvinder Kaur and Kavita Chavali ()
Additional contact information
Arvinder Kaur: University School of Business, Chandigarh University, Mohali 140413, India
Kavita Chavali: College of Commerce and Business Administration, Dhofar University, Salalah 211, Oman

Risks, 2025, vol. 13, issue 5, 1-24

Abstract: This study focuses on the precise forecasting of stock price movement to determine returns, diversify risk, and demystify existing opportunities. It also aims to gauge the difference in terms of the stock volatility of various pharma companies before and during the pandemic era. The prediction of stock market volatility and associated risks is demonstrated by using the GARCH-M model. A sample is collected by clustering daily closing and opening prices from the official websites of the top ten pharmaceutical companies listed on the Bombay Stock Exchange for ten years, from 2012 to 2023. It is evident when using the GARCH-M model, which indicates pharma stock volatility clustering before the COVID-19 pandemic, that a significant relationship is present between risk and return and that these could cause future volatility and significant price movements. Before the COVID-19 pandemic, investors had time to adjust to market conditions, as the volatility was constant but less sensitive to transient shocks. Though it passed faster than ever, the COVID-19 pandemic produced significant market instability. The findings suggest that, especially before the COVID-19 pandemic, the high GARCH(-1) coefficients held Merton’s ICAPM, which maintains that past volatility shapes future returns. This sort of activity is compatible with the way financial markets usually operate. The findings suggest that volatility rose after the COVID-19 pandemic, but this was more because of changes in government policies and vaccines than because of regular market forces. Pricing patterns are dominated by stock interventions, liquidity constraints, and sentiments during a crisis period when volatility becomes irrelevant. Appropriate decision-making by individual investors, portfolio managers, and policymakers regarding the stock market is possible through effective prediction based on time-series analysis. The GARCH-M model is compatible with predicting future stock price changes efficiently. This study uniquely applies the GARCH-M model to the Indian pharmaceutical sector, offering valuable insights into stock volatility and risk–return dynamics, particularly during the COVID-19 pandemic.

Keywords: pharmaceutical sector; BSE stock indices; GARCH-M model; risk; return volatility; COVID-19 (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-9091/13/5/87/pdf (application/pdf)
https://www.mdpi.com/2227-9091/13/5/87/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:13:y:2025:i:5:p:87-:d:1648082

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-02
Handle: RePEc:gam:jrisks:v:13:y:2025:i:5:p:87-:d:1648082