EconPapers    
Economics at your fingertips  
 

Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates

Marcus C. Christiansen
Additional contact information
Marcus C. Christiansen: Institute of Insurance Science, University of Ulm, 89069 Ulm, Germany

Risks, 2013, vol. 1, issue 3, 1-20

Abstract: In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.

Keywords: forward interest rate; forward mortality rate; life insurance; stochastic diffusion process; Gaussian approximation (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-9091/1/3/81/pdf (application/pdf)
https://www.mdpi.com/2227-9091/1/3/81/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:1:y:2013:i:3:p:81-100:d:29915

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:81-100:d:29915