EconPapers    
Economics at your fingertips  
 

Optimal Insurance with Heterogeneous Beliefs and Disagreement about Zero-Probability Events

Mario Ghossoub

Risks, 2016, vol. 4, issue 3, 1-28

Abstract: In problems of optimal insurance design, Arrow’s classical result on the optimality of the deductible indemnity schedule holds in a situation where the insurer is a risk-neutral Expected-Utility (EU) maximizer, the insured is a risk-averse EU-maximizer, and the two parties share the same probabilistic beliefs about the realizations of the underlying insurable loss. Recently, Ghossoub re-examined Arrow’s problem in a setting where the two parties have different subjective beliefs about the realizations of the insurable random loss, and he showed that if these beliefs satisfy a certain compatibility condition that is weaker than the Monotone Likelihood Ratio (MLR) condition, then optimal indemnity schedules exist and are nondecreasing in the loss. However, Ghossoub only gave a characterization of these optimal indemnity schedules in the special case of an MLR. In this paper, we consider the general case, allowing for disagreement about zero-probability events. We fully characterize the class of all optimal indemnity schedules that are nondecreasing in the loss, in terms of their distribution under the insured’s probability measure, and we obtain Arrow’s classical result, as well as one of the results of Ghossoub as corollaries. Finally, we formalize Marshall’s argument that, in a setting of belief heterogeneity, an optimal indemnity schedule may take “any”shape.

Keywords: optimal insurance; deductible contract; subjective probability; heterogeneous beliefs; mutual singularity (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2227-9091/4/3/29/pdf (application/pdf)
https://www.mdpi.com/2227-9091/4/3/29/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:4:y:2016:i:3:p:29-:d:75385

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jrisks:v:4:y:2016:i:3:p:29-:d:75385