EconPapers    
Economics at your fingertips  
 

Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

Khaled Halteh, Kuldeep Kumar and Adrian Gepp
Additional contact information
Khaled Halteh: Bond Business School, Bond University, Gold Coast QLD 4226, Australia
Kuldeep Kumar: Bond Business School, Bond University, Gold Coast QLD 4226, Australia

Risks, 2018, vol. 6, issue 2, 1-13

Abstract: Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE) turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER)’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

Keywords: credit risk; prediction; financial distress; insolvency risk; tree-based stochastic models; mining sector (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-9091/6/2/55/pdf (application/pdf)
https://www.mdpi.com/2227-9091/6/2/55/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:6:y:2018:i:2:p:55-:d:146635

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:55-:d:146635