EconPapers    
Economics at your fingertips  
 

On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio

Tatjana Miljkovic and Daniel Fernández
Additional contact information
Tatjana Miljkovic: Department of Statistics, Miami University, Oxford, OH 45056, USA
Daniel Fernández: Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Sant Boi de Llobregat, Barcelona 08830, Spain

Risks, 2018, vol. 6, issue 2, 1-18

Abstract: We review two complementary mixture-based clustering approaches for modeling unobserved heterogeneity in an insurance portfolio: the generalized linear mixed cluster-weighted model (CWM) and mixture-based clustering for an ordered stereotype model (OSM). The latter is for modeling of ordinal variables, and the former is for modeling losses as a function of mixed-type of covariates. The article extends the idea of mixture modeling to a multivariate classification for the purpose of testing unobserved heterogeneity in an insurance portfolio. The application of both methods is illustrated on a well-known French automobile portfolio, in which the model fitting is performed using the expectation-maximization (EM) algorithm. Our findings show that these mixture-based clustering methods can be used to further test unobserved heterogeneity in an insurance portfolio and as such may be considered in insurance pricing, underwriting, and risk management.

Keywords: generalized linear model; cluster-weighted model; ordered stereotype model; ordinal data (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2227-9091/6/2/57/pdf (application/pdf)
https://www.mdpi.com/2227-9091/6/2/57/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:6:y:2018:i:2:p:57-:d:147107

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:57-:d:147107