EconPapers    
Economics at your fingertips  
 

Risk Model Validation: An Intraday VaR and ES Approach Using the Multiplicative Component GARCH

Ravi Summinga-Sonagadu and Jason Narsoo
Additional contact information
Ravi Summinga-Sonagadu: Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius
Jason Narsoo: Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius

Risks, 2019, vol. 7, issue 1, 1-23

Abstract: In this paper, we employ 99% intraday value-at-risk (VaR) and intraday expected shortfall (ES) as risk metrics to assess the competency of the Multiplicative Component Generalised Autoregressive Heteroskedasticity (MC-GARCH) models based on the 1-min EUR/USD exchange rate returns. Five distributional assumptions for the innovation process are used to analyse their effects on the modelling and forecasting performance. The high-frequency volatility models were validated in terms of in-sample fit based on various statistical and graphical tests. A more rigorous validation procedure involves testing the predictive power of the models. Therefore, three backtesting procedures were used for the VaR, namely, the Kupiec’s test, a duration-based backtest, and an asymmetric VaR loss function. Similarly, three backtests were employed for the ES: a regression-based backtesting procedure, the Exceedance Residual backtest and the V-Tests. The validation results show that non-normal distributions are best suited for both model fitting and forecasting. The MC-GARCH(1,1) model under the Generalised Error Distribution (GED) innovation assumption gave the best fit to the intraday data and gave the best results for the ES forecasts. However, the asymmetric Skewed Student’s-t distribution for the innovation process provided the best results for the VaR forecasts. This paper presents the results of the first empirical study (to the best of the authors’ knowledge) in: (1) forecasting the intraday Expected Shortfall (ES) under different distributional assumptions for the MC-GARCH model; (2) assessing the MC-GARCH model under the Generalised Error Distribution (GED) innovation; (3) evaluating and ranking the VaR predictability of the MC-GARCH models using an asymmetric loss function.

Keywords: model validation; high-frequency; Multiplicative Component Generalised Autoregressive Heteroskedasticity (MC-GARCH); error distributions; intraday value-at-risk (VaR); intraday expected shortfall (ES); backtests (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-9091/7/1/10/pdf (application/pdf)
https://www.mdpi.com/2227-9091/7/1/10/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:7:y:2019:i:1:p:10-:d:200288

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:10-:d:200288