Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE
David Allen and
Michael McAleer
Risks, 2020, vol. 8, issue 1, 1-20
Abstract:
The paper examines the relative performance of Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals taken from the Oxford Man Realised Library. Both models demonstrated comparable performance and were correlated to a similar extent with RV estimates when measured by ordinary least squares (OLS). However, a crude variant of Corsi’s (2009) Heterogeneous Autoregressive (HAR) model, applied to squared demeaned daily returns on FTSE, appeared to predict the daily RV of FTSE better than either of the two models. Quantile regressions suggest that all three methods capture tail behaviour similarly and adequately. This leads to the question of whether we need either of the two standard volatility models if the simple expedient of using lagged squared demeaned daily returns provides a better RV predictor, at least in the context of the sample.
Keywords: stochastic volatility; GARCH (1,1); FTSE; RV 5 min; HAR model; demeaned daily squared returns (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-9091/8/1/12/pdf (application/pdf)
https://www.mdpi.com/2227-9091/8/1/12/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:8:y:2020:i:1:p:12-:d:315296
Access Statistics for this article
Risks is currently edited by Mr. Claude Zhang
More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().