EconPapers    
Economics at your fingertips  
 

Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?

Han Lin Shang and Steven Haberman
Additional contact information
Steven Haberman: Cass Business School, City, University of London, London EC1Y 8TZ, UK

Risks, 2020, vol. 8, issue 3, 1-11

Abstract: An essential input of annuity pricing is the future retiree mortality. From observed age-specific mortality data, modeling and forecasting can take place in two routes. On the one hand, we can first truncate the available data to retiree ages and then produce mortality forecasts based on a partial age-range model. On the other hand, with all available data, we can first apply a full age-range model to produce forecasts and then truncate the mortality forecasts to retiree ages. We investigate the difference in modeling the logarithmic transformation of the central mortality rates between a partial age-range and a full age-range model, using data from mainly developed countries in the Human Mortality Database (2020). By evaluating and comparing the short-term point and interval forecast accuracies, we recommend the first strategy by truncating all available data to retiree ages and then produce mortality forecasts. However, when considering the long-term forecasts, it is unclear which strategy is better since it is more difficult to find a model and parameters that are optimal. This is a disadvantage of using methods based on time-series extrapolation for long-term forecasting. Instead, an expectation approach, in which experts set a future target, could be considered, noting that this method has also had limited success in the past.

Keywords: age-period-cohort; Lee–Carter model with Poisson error; Lee–Carter model with Gaussian error; Plat model (search for similar items in EconPapers)
JEL-codes: C G0 G1 G2 G3 K2 M2 M4 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-9091/8/3/69/pdf (application/pdf)
https://www.mdpi.com/2227-9091/8/3/69/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jrisks:v:8:y:2020:i:3:p:69-:d:378980

Access Statistics for this article

Risks is currently edited by Mr. Claude Zhang

More articles in Risks from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jrisks:v:8:y:2020:i:3:p:69-:d:378980