Waste Management Analysis in Developing Countries through Unsupervised Classification of Mixed Data
Giulia Caruso and
Stefano Antonio Gattone
Additional contact information
Giulia Caruso: Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, University G. d’Annunzio Chieti-Pescara, Vle Pindaro n. 42, 65127 Pescara, Italy
Stefano Antonio Gattone: Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, University G. d’Annunzio Chieti-Pescara, Vle Pindaro n. 42, 65127 Pescara, Italy
Social Sciences, 2019, vol. 8, issue 6, 1-15
Abstract:
The increase in global population and the improvement of living standards in developing countries has resulted in higher solid waste generation. Solid waste management increasingly represents a challenge, but it might also be an opportunity for the municipal authorities of these countries. To this end, the awareness of a variety of factors related to waste management and an efficacious in-depth analysis of them might prove to be particularly significant. For this purpose, and since data are both qualitative and quantitative, a cluster analysis specific for mixed data has been implemented on the dataset. The analysis allows us to distinguish two well-defined groups. The first one is poorer, less developed, and urbanized, with a consequent lower life expectancy of inhabitants. Consequently, it registers lower waste generation and lower C O 2 emissions. Surprisingly, it is more engaged in recycling and in awareness campaigns related to it. Since the cluster discrimination between the two groups is well defined, the second cluster registers the opposite tendency for all the analyzed variables. In conclusion, this kind of analysis offers a potential pathway for academics to work with policy-makers in moving toward the realization of waste management policies tailored to the local context.
Keywords: cluster analysis; unsupervised classification; mixed data; circular economy; waste management (search for similar items in EconPapers)
JEL-codes: A B N P Y80 Z00 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.mdpi.com/2076-0760/8/6/186/pdf (application/pdf)
https://www.mdpi.com/2076-0760/8/6/186/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jscscx:v:8:y:2019:i:6:p:186-:d:239380
Access Statistics for this article
Social Sciences is currently edited by Ms. Yvonne Chu
More articles in Social Sciences from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().