Bland–Altman Limits of Agreement from a Bayesian and Frequentist Perspective
Oke Gerke and
Sören Möller
Additional contact information
Oke Gerke: Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
Sören Möller: Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
Stats, 2021, vol. 4, issue 4, 1-11
Abstract:
Bland–Altman agreement analysis has gained widespread application across disciplines, last but not least in health sciences, since its inception in the 1980s. Bayesian analysis has been on the rise due to increased computational power over time, and Alari, Kim, and Wand have put Bland–Altman Limits of Agreement in a Bayesian framework (Meas. Phys. Educ. Exerc. Sci. 2021, 25, 137–148). We contrasted the prediction of a single future observation and the estimation of the Limits of Agreement from the frequentist and a Bayesian perspective by analyzing interrater data of two sequentially conducted, preclinical studies. The estimation of the Limits of Agreement θ 1 and θ 2 has wider applicability than the prediction of single future differences. While a frequentist confidence interval represents a range of nonrejectable values for null hypothesis significance testing of H 0 : θ 1 ≤ −δ or θ 2 ≥ δ against H 1 : θ 1 > −δ and θ 2 < δ, with a predefined benchmark value δ, Bayesian analysis allows for direct interpretation of both the posterior probability of the alternative hypothesis and the likelihood of parameter values. We discuss group-sequential testing and nonparametric alternatives briefly. Frequentist simplicity does not beat Bayesian interpretability due to improved computational resources, but the elicitation and implementation of prior information demand caution. Accounting for clustered data (e.g., repeated measurements per subject) is well-established in frequentist, but not yet in Bayesian Bland–Altman analysis.
Keywords: agreement; Bland–Altman plot; confidence interval; credibility interval; method comparison; region of practical equivalence; repeatability; reproducibility (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-905X/4/4/62/pdf (application/pdf)
https://www.mdpi.com/2571-905X/4/4/62/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:4:y:2021:i:4:p:62-1090:d:705850
Access Statistics for this article
Stats is currently edited by Mrs. Minnie Li
More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().