Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning
Alexander Robitzsch ()
Additional contact information
Alexander Robitzsch: IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany
Stats, 2023, vol. 6, issue 1, 1-17
Abstract:
In the social sciences, the performance of two groups is frequently compared based on a cognitive test involving binary items. Item response models are often utilized for comparing the two groups. However, the presence of differential item functioning (DIF) can impact group comparisons. In order to avoid the biased estimation of groups, appropriate statistical methods for handling differential item functioning are required. This article compares the performance-regularized estimation and several robust linking approaches in three simulation studies that address the one-parameter logistic (1PL) and two-parameter logistic (2PL) models, respectively. It turned out that robust linking approaches are at least as effective as the regularized estimation approach in most of the conditions in the simulation studies.
Keywords: item response model; robust linking; regularization; differential item functioning (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2571-905X/6/1/12/pdf (application/pdf)
https://www.mdpi.com/2571-905X/6/1/12/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:6:y:2023:i:1:p:12-208:d:1046607
Access Statistics for this article
Stats is currently edited by Mrs. Minnie Li
More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().