EconPapers    
Economics at your fingertips  
 

A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items

Alexander Robitzsch ()
Additional contact information
Alexander Robitzsch: IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

Stats, 2024, vol. 7, issue 3, 1-16

Abstract: The two-parameter normal-ogive (2PNO) model is one of the most popular item response theory (IRT) models for analyzing dichotomous items. Consistent parameter estimation of the 2PNO model using marginal maximum likelihood estimation relies on the local independence assumption. However, the assumption of local independence might be violated in practice. Likelihood-based estimation of the local dependence structure is often computationally demanding. Moreover, many IRT models that model local dependence do not have a marginal interpretation of item parameters. In this article, limited information estimation methods are reviewed that allow the convenient and straightforward handling of local dependence in estimating the 2PNO model. In detail, pairwise likelihood, weighted least squares, and normal-ogive harmonic analysis robust method (NOHARM) estimation are compared with marginal maximum likelihood estimation that ignores local dependence. A simulation study revealed that item parameters can be consistently estimated with limited information methods. At the same time, marginal maximum likelihood estimation resulted in biased item parameter estimates in the presence of local dependence. From a practical perspective, there were only minor differences regarding the statistical quality of item parameter estimates of the different estimation methods. Differences between the estimation methods are also compared for two empirical datasets.

Keywords: item response model; normal-ogive model; local dependence; pairwise likelihood estimation; weighted least squares estimation; NOHARM estimation (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-905X/7/3/35/pdf (application/pdf)
https://www.mdpi.com/2571-905X/7/3/35/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:7:y:2024:i:3:p:35-591:d:1419508

Access Statistics for this article

Stats is currently edited by Mrs. Minnie Li

More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:35-591:d:1419508