EconPapers    
Economics at your fingertips  
 

Factor Analysis of Ordinal Items: Old Questions, Modern Solutions?

João Marôco ()
Additional contact information
João Marôco: William James Centre for Research, ISPA–Instituto Universitário, 1149-041 Lisboa, Portugal

Stats, 2024, vol. 7, issue 3, 1-18

Abstract: Factor analysis, a staple of correlational psychology, faces challenges with ordinal variables like Likert scales. The validity of traditional methods, particularly maximum likelihood (ML), is debated. Newer approaches, like using polychoric correlation matrices with weighted least squares estimators (WLS), offer solutions. This paper compares maximum likelihood estimation (MLE) with WLS for ordinal variables. While WLS on polychoric correlations generally outperforms MLE on Pearson correlations, especially with nonbell-shaped distributions, it may yield artefactual estimates with severely skewed data. MLE tends to underestimate true loadings, while WLS may overestimate them. Simulations and case studies highlight the importance of item psychometric distributions. Despite advancements, MLE remains robust, underscoring the complexity of analyzing ordinal data in factor analysis. There is no one-size-fits-all approach, emphasizing the need for distributional analyses and careful consideration of data characteristics.

Keywords: factor analysis; ordinal items; maximum likelihood; polychoric correlations; weighted least squares (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-905X/7/3/60/pdf (application/pdf)
https://www.mdpi.com/2571-905X/7/3/60/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:7:y:2024:i:3:p:60-1001:d:1479320

Access Statistics for this article

Stats is currently edited by Mrs. Minnie Li

More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:60-1001:d:1479320