EconPapers    
Economics at your fingertips  
 

Robustness of the Trinormal ROC Surface Model: Formal Assessment via Goodness-of-Fit Testing

Christos Nakas ()
Additional contact information
Christos Nakas: Laboratory of Biometry, School of Agriculture, University of Thessaly, 384 46 Volos, Greece

Stats, 2025, vol. 8, issue 4, 1-15

Abstract: Receiver operating characteristic (ROC) surfaces provide a natural extension of ROC curves to three-class diagnostic problems. A key summary index is the volume under the surface (VUS), representing the probability that a randomly chosen observation from each of the three ordered groups is correctly classified. A parametric estimation of VUS typically assumes trinormality of the class distributions. However, a formal method for the verification of this composite assumption has not appeared in the literature. Our approach generalizes the two-class AUC-based GOF test of Zou et al. to the three-class setting by exploiting the parallel structure between empirical and trinormal VUS estimators. We propose a global goodness-of-fit (GOF) test for trinormal ROC models based on the difference between empirical and trinormal parametric estimates of the VUS. To improve stability, a probit transformation is applied and a bootstrap procedure is used to estimate the variance of the difference. The resulting test provides a formal diagnostic for assessing the adequacy of trinormal ROC modeling. Simulation studies illustrate the robustness of the assumption via the empirical size and power of the test under various distributional settings, including skewed and multimodal alternatives. The method’s application to COVID-19 antibody level data demonstrates the practical utility of it. Our findings suggest that the proposed GOF test is simple to implement, computationally feasible for moderate sample sizes, and a useful complement to existing ROC surface methodology.

Keywords: ROC surface; VUS; trinormal model; goodness-of-fit test; bootstrap; Box–Cox transformation (search for similar items in EconPapers)
JEL-codes: C1 C10 C11 C14 C15 C16 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-905X/8/4/101/pdf (application/pdf)
https://www.mdpi.com/2571-905X/8/4/101/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jstats:v:8:y:2025:i:4:p:101-:d:1773929

Access Statistics for this article

Stats is currently edited by Mrs. Minnie Li

More articles in Stats from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-15
Handle: RePEc:gam:jstats:v:8:y:2025:i:4:p:101-:d:1773929