EconPapers    
Economics at your fingertips  
 

Land Use Types and Geomorphic Settings Reflected in Soil Organic Carbon Distribution at the Scale of Watershed

Ye Yuan, Xueyi Shi and Zhongqiu Zhao
Additional contact information
Ye Yuan: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
Xueyi Shi: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
Zhongqiu Zhao: School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

Sustainability, 2018, vol. 10, issue 10, 1-12

Abstract: Soil organic carbon (SOC) is vital to soil ecosystem function and it plays a key role in carbon cycling in the terrestrial ecosystem. The spatial pattern of SOC stock (SOCs) is affected by specific geomorphic settings and land-use types at the scale of watershed. Nevertheless, the distribution of SOCs with fluvial landform regimes and land use types was not sufficiently elucidated in the semi-humid riparian ecosystem in north China. In this study, 103 soil plots were sampled and spatial auto-correlation method was adopted to detect the spatial pattern of SOCs in the Changhe watershed that was located at the boundary of the Loess Plateau and the Taihang Mountains. The results showed that SOCs in the Changhe watershed varied from 18.03 Mg ha −1 to 21.51 Mg ha −1 and it was in the order: grassland > forestland > cropland > construction land. SOCs varied with geomorphic settings, among which, the altitude exerted more influence on the distribution of SOCs than the aspect and the slope. In terms of the spatial pattern of SOCs, 17 plots with higher SOCs collectively distributed in the west of the watershed and that with lower SOCs (19 plots) concentrated in the midlands. This indicated that the upland had higher SOCs while the lowland had lower values. Overall, land use type and geomorphic settings (especially the altitude) should be considered when estimating the SOC sequestration in warmer and wetter watershed in north China. With regard to the implications for land use management, reforestation could elevate the SOCs. Moreover, no-tillage and returning crop straw to cultivated soils could be efficient approaches to elevate soil carbon sequestration and soil productivity.

Keywords: soil organic carbon; stock; Changhe watershed; land use type; geomorphic settings (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/10/3490/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/10/3490/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:10:p:3490-:d:172767

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3490-:d:172767