EconPapers    
Economics at your fingertips  
 

Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments

Zhenqi Hu, Linghua Duo and Fang Shao
Additional contact information
Zhenqi Hu: Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology (Beijing), Beijing 100083, China
Linghua Duo: Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology (Beijing), Beijing 100083, China
Fang Shao: School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China

Sustainability, 2018, vol. 10, issue 11, 1-12

Abstract: The cultivated land area per capita in China is relatively small compared to the world average. However, most of the coal output is coming from underground mining, resulting in land subsidence and the destruction of existing cultivated land. The Yellow River is known as a ground-suspended river due to its large sediment concentration. Using unpolluted Yellow River sediment to reclaim the coal mine subsidence not only solves the problem of sediment deposition, but also solves the problem of shortage of filling material. Some experimental studies revealed low soil productivity as a result of thin soil cover. To ensure crop growth and production in land reconstructed with Yellow River sediments, determining the optimal thickness of soil cover over the sediment is extremely important. There were four experimental treatments and one control treatment. Each treatment was repeated three times. The control treatment was an original soil profile with 30 cm topsoil plus 110 cm subsoil. The four experimental treatments with different thickness of soil covers had the same thickness of topsoil (30 cm) and Yellow River sediments (60 cm), and different thickness of subsoil, which were 10, 30, 40, and 50 cm, respectively. Thus, the total thicknesses of soil cover (topsoil plus subsoil) were 40 cm, 60 cm, 70 cm, and 80 cm, respectively. The topsoil, subsoil, and Yellow River sediments were collected from Liangshan County. The soil type is fluvo-aquic. Maize ( Zea mays L.) is the main crop in Liangshan County. A greenhouse experiment was conducted to investigate the growth of maize. The results showed that (1) the peroxidase (POD) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content of maize leaf decreased with an increasing thickness of soil, while soluble protein (SP) and leaf relative water content (RWC) increased. (2) The dry biomasses of the shoot and root system in T70 and T80 were not significantly different from those in the control (3) Increased soil thickness is conducive to the storage of more water and available nutrients. Considering the time and cost of reconstruction, 70 cm is the optimal thickness of soil cover on Yellow River sediment to ensure maize growth.

Keywords: land reclamation; soil profile; river sediments; maize growth (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/11/3853/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/11/3853/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:11:p:3853-:d:177906

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3853-:d:177906