EconPapers    
Economics at your fingertips  
 

Environmental Impact Associated with the Supply Chain and Production of Grounding and Roasting Coffee through Life Cycle Analysis

Mario R. Giraldi-Díaz, Lorena De Medina-Salas, Eduardo Castillo-González and Rosario León-Lira
Additional contact information
Mario R. Giraldi-Díaz: Facultad de Ciencias Químicas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91040 Xalapa, Veracruz, Mexico
Lorena De Medina-Salas: Facultad de Ciencias Químicas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91040 Xalapa, Veracruz, Mexico
Eduardo Castillo-González: Facultad de Ingeniería Civil, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91040 Xalapa, Veracruz, Mexico
Rosario León-Lira: Facultad de Ciencias Químicas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91040 Xalapa, Veracruz, Mexico

Sustainability, 2018, vol. 10, issue 12, 1-17

Abstract: Coffee is the beverage resulting from the infusion of roasted and ground seeds of the coffee fruit. It is one of the most commercialized products in the world and represents a high interest agro-industrial product in Mexico. The demand for this product has grown in great measure in the last decade, thus it is becoming more important to make environmental and energetic evaluations of its manufacturing process. In this sense, life cycle assessment (LCA) is a useful tool for the purposes of this study, as it quantifies the wake of environmental impacts associated to the production and supply chain from its inputs and outputs of the product system. Therefore, the impact categories studied were carbon, energetic, and water footprints. The cultivation phase led to global contributions between 61% and 67% in magnitude for energy and carbon footprints, respectively; meanwhile, the coffee benefit process was the phase with the most contributions to the water footprint (54%). The residual biomass from the product system used as the energy supply within the coffee drying sub-phase represented energy savings of around 41% in comparison to the use of conventional fossil fuels, thus reducing the global impact associated to the system’s product.

Keywords: coffee production; life cycle assessment (LCA); carbon; water and energy footprint; environmental impact (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/12/4598/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/12/4598/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:12:p:4598-:d:188022

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4598-:d:188022