EconPapers    
Economics at your fingertips  
 

Adapting Bioretention Construction Details to Local Practices in Finland

Outi Tahvonen
Additional contact information
Outi Tahvonen: Bioeconomy Research Unit, Häme University of Applied Sciences (HAMK), Lepaantie 129, FI-14610 Lepaa, Finland

Sustainability, 2018, vol. 10, issue 2, 1-17

Abstract: Bioretention is a method of storm water management that includes several processes following the natural hydrological cycle. Bioretention, or variations of it, include rain gardens and bioswales, infiltrates, filtrates, evapotranspirates, and help to store and manage storm water run-off. A bioretention cell retains water, removes pollutants, and provides water elements for urban green areas. Although bioretention is a promising method for multifunctional storm water management, its construction details should not be copied from other climatic areas. A direct application may dismiss local conditions, materials, and construction practices. This study aimed to adapt construction details for bioretention to Finnish local practices and conditions and to formulate bioretention constructions that balance water, soil, and vegetation. First, construction details were reviewed, then local adaptations were applied, and finally, the application and two variations of growing media in two construction depths were tested in a test field in Southern Finland. Sandy growing media allowed the efficient retention of water during the first year, but failed to provide vital growth. The use of topsoil and compost in the growing media improved growth, but held high electrical conductivity after infiltration. All the experimental cells in the test field showed activity during the melting periods, both during winter and spring. If bioretention plays a multifunctional role in urban design and engineered ecology, the design parameters should not only focus on storm water quantity, but also on quality management and vegetation growth.

Keywords: bioretention; storm water management; test field; growing media; heavy rain simulation; vegetation cover; cold climate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/2/276/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/2/276/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:2:p:276-:d:128202

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:276-:d:128202