EconPapers    
Economics at your fingertips  
 

Complex Relationships of the Effects of Topographic Characteristics and Susceptible Tree Cover on Burn Severity

Hyun-Joo Lee, Yun Eui Choi and Sang-Woo Lee
Additional contact information
Hyun-Joo Lee: Graduate Program, Department of Environmental Science, Konkuk University, Gwangjin-gu, Seoul 05029, Korea
Yun Eui Choi: Graduate Program, Department of Environmental Science & Ecological Engineering, Graduate School, Korea University, Seongbuk-gu, Seoul 02841, Korea
Sang-Woo Lee: Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-gu, Seoul 05029, Korea

Sustainability, 2018, vol. 10, issue 2, 1-20

Abstract: Forest fires and burn severity mosaics have profound impacts on the post-fire dynamics and complexity of forest ecosystems. Numerous studies have investigated the relationship between topographic variables and susceptible tree covers with regard to burn severity. However, these relationships have not been fully elucidated, because most studies have assumed linearity in these relationships. Therefore, we examined the linearity and the nonlinearity in the relationships between topographic variables and susceptible tree covers with burn severity by comparing linear and nonlinear models. The site of the Samcheok fire, the largest recorded forest fire in Korea, was used as the study area. We generated 802 grid cells with a 500-m resolution that encompassed the entire study area and collected a dataset that included the topographic variables and percentage of red pine trees, which are the most susceptible tree cover types in Korea. We used conventional linear models and generalized additive models to estimate the linear and the nonlinear models based on topographic variables and Japanese red pine trees. The results revealed that the percentage of red pine trees had linear effects on burn severity, reinforcing the importance of silviculture and forest management to lower burn severity. Meanwhile, the topographic variables had nonlinear effects on burn severity. Among the topographic variables, elevation had the strongest nonlinear effect on burn severity, possibly by overriding the effects of susceptible fuels over elevation effects or due to the nonlinear effects of topographic characteristics on pre-fire fuel conditions, including the spatial distribution and availability of susceptible tree cover. To validate and generalize the nonlinear effects of elevation and other topographic variables, additional research is required at different fire sites with different tree cover types in different geographic locations.

Keywords: burn severity; GAM; Japanese red pine; nonlinear relationship; topography (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/2/295/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/2/295/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:2:p:295-:d:128398

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:295-:d:128398