EconPapers    
Economics at your fingertips  
 

Low-Cost Implementation of a Named Entity Recognition System for Voice-Activated Human-Appliance Interfaces in a Smart Home

Geonwoo Park and Harksoo Kim
Additional contact information
Geonwoo Park: Program of Computer and Communications Engineering, Kangwon National University, Chuncheon-si 24341, Korea
Harksoo Kim: Program of Computer and Communications Engineering, Kangwon National University, Chuncheon-si 24341, Korea

Sustainability, 2018, vol. 10, issue 2, 1-11

Abstract: When we develop voice-activated human-appliance interface systems in smart homes, named entity recognition (NER) is an essential tool for extracting execution targets from natural language commands. Previous studies on NER systems generally include supervised machine-learning methods that require a substantial amount of human-annotated training corpus. In the smart home environment, categories of named entities should be defined according to voice-activated devices (e.g., food names for refrigerators and song titles for music players). The previous machine-learning methods make it difficult to change categories of named entities because a large amount of the training corpus should be newly constructed by hand. To address this problem, we present a semi-supervised NER system to minimize the time-consuming and labor-intensive task of constructing the training corpus. Our system uses distant supervision methods with two kinds of auto-labeling processes: auto-labeling based on heuristic rules for single-class named entity corpus generation and auto-labeling based on a pre-trained single-class NER model for multi-class named entity corpus generation. Then, our system improves NER accuracy by using a bagging-based active learning method. In our experiments that included a generic domain that featured 11 named entity classes and a context-specific domain about baseball that featured 21 named entity classes, our system demonstrated good performances in both domains, with F1-measures of 0.777 and 0.958, respectively. Since our system was built from a relatively small human-annotated training corpus, we believe it is a viable alternative to current NER systems in smart home environments.

Keywords: human-appliance interface system; named entity recognition; bagging-based active learning; distant supervision; low-cost implementation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/2/488/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/2/488/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:2:p:488-:d:131520

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:488-:d:131520