EconPapers    
Economics at your fingertips  
 

Multi-Environment Evaluation and Genetic Characterisation of Common Bean Breeding Lines for Organic Farming Systems

Leonardo Caproni, Lorenzo Raggi, Carlo Tissi, Sally Howlett, Renzo Torricelli and Valeria Negri
Additional contact information
Leonardo Caproni: Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
Lorenzo Raggi: Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
Carlo Tissi: Enza Zaden Italia Research, S.S. Aurelia Km 96, 710, Tarquinia, 01016 Viterbo, Italy
Sally Howlett: N8 AgriFood, Department of Biology, University of York, Heslington, York YO10 5DD, UK
Renzo Torricelli: Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
Valeria Negri: Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy

Sustainability, 2018, vol. 10, issue 3, 1-17

Abstract: It is recognised that one of the main causes for the relative low yields under organic conditions is the use of modern cultivars which are bred for high-input management systems. The work described here aimed to study and test possible breeding strategies to produce cultivars of common bean for organic agriculture. To this purpose, crosses between a traditional Italian landrace named “Gnocchetto” and a cultivar were carried out. The F 1 plants obtained were either backcrossed or self-fertilised and the obtained materials subjected to selection for quality traits at different development stages. The resulting lines were tested under four different environmental conditions for three years in order to determine their potential performance. The resulting data were analysed using a Multi-Environment Trial Analysis (MET) approach and different visualisations of the GGE biplot were generated. Furthermore, to assess the level of genetic similarity, the lines were characterised using 25 Simple Sequence Repeat (SSR) molecular markers. Results showed that the breeding approach applied allowed to select lines with the same technological and agronomic characteristics as commercially available cultivars, but with different adaptation abilities that make them suitable for organic agriculture.

Keywords: common bean; organic agriculture; landrace germplasm; multi-environment trials; GGE biplot; SSR markers (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/3/777/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/3/777/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:3:p:777-:d:135868

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:777-:d:135868