EconPapers    
Economics at your fingertips  
 

Mine Size Effects on Coal Pillar Stress and Their Application for Partial Extraction

Yang Yu, Ka-Zhong Deng and Shen-En Chen
Additional contact information
Yang Yu: School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China
Ka-Zhong Deng: School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China
Shen-En Chen: Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA

Sustainability, 2018, vol. 10, issue 3, 1-12

Abstract: Coal is a nonrenewable resource. Hence, it is important to improve the coal recovery ratio and ensure the stability of coal mines for sustainable development of mining cities. Partial extraction techniques, such as strip pillar mining or room-and-pillar mining, are efficient methods to extract coal. Pillar stress is a critical property for pillar design and for the assessment of mine stability after partial extraction. Current pillar stress calculation methods can sometimes overestimate the pillar stress and unnecessarily large coal pillars may be left underground, which leads to a waste of coal resources. In this paper, the size effects of mining activity on the maximum vertical pillar stress were investigated using numerical simulations. Both strip pillar mining and room-and-pillar mining were considered as possible mining scenarios at different mining depths. The results show that the maximum pillar stress of a mine is primarily controlled by four factors: the mine size to mining depth ratio, the mining width to pillar width ratio, the overburden elastic modulus, and the mining depth. The maximum pillar stress of a mine gradually increases to an ultimate value as the mine size increases. Simplified formulas and methodology have been derived for stress calculations under consideration of mine size effects and, therefore, can reduce the waste of coal resources from the overestimation of pillar stress.

Keywords: strip pillar mining; room-and-pillar mining; pillar stress; pillar design (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/3/792/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/3/792/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:3:p:792-:d:136035

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:792-:d:136035