A Cost-Oriented Optimal Model of Electric Vehicle Taxi Systems
Xiang Liu,
Ning Wang and
Decun Dong
Additional contact information
Xiang Liu: College of Transportation Engineering, School of Automotive Studies, Tongji University, Shanghai 200092, China
Ning Wang: College of Transportation Engineering, School of Automotive Studies, Tongji University, Shanghai 200092, China
Decun Dong: College of Transportation Engineering, School of Automotive Studies, Tongji University, Shanghai 200092, China
Sustainability, 2018, vol. 10, issue 5, 1-23
Abstract:
This paper presents a cost optimal model of electric vehicle taxi systems based on the cost of electric vehicle taxi companies, charging or battery swap stations, passengers’ time, and emission costs. Considering the requirement of meeting passengers’ travel demands, an electric taxi demand model using transportation elasticity is formulated to optimize the number of electric taxis. The electric taxi demand model constitutes the measure of electric taxis, the cruise range, the amount of charging or battery swap stations, and other related factors. Simultaneously, to meet the charging requirements of electric taxis, a layout optimal model of EVSE (electric vehicle supply equipment) is designed using a Voronoi polygon method aimed at the cost of charging or battery swap stations and the range cost for changing. Finally, these aforementioned models are mixed to calculate the scale of electric taxis, the allocation of vehicle models, the optimizing level, and the site distribution of charging or battery swap stations. The key findings include the following: (1) the cost of the BEV(battery electric vehicle) taxi system is lower in the charging model than in the battery swap model, (2) the cost of the PHEV taxi system is lower than the BEV taxi system in the charging model, (3) in the Tongzhou District of Beijing, five charging or battery swap stations required being found to meet the charging demands of 5557 BEVs in the charging model or 5316 BEVs in the battery swap model, (4) according to the passengers’ travel demands and traffic conditions in Tongzhou, the BEV’s cruise range ought to be 250 km and BEV’s battery capacity should be 42.5 kW, the price of PHEV should be under 24,000 RMB and the electric-powered cruise range needs to be under 100 km, the daily operating time of EVs is around 16 h and the daily operating range is controlled under 380 km, and (5) a carbon tax is suggested to be imposed on ICEVs but the price should be under 20 RMB per ton.
Keywords: electric vehicle taxi; system optimization; layout of EVSE sites; passengers’ travel demands (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/10/5/1557/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/5/1557/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:5:p:1557-:d:146201
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().