A Simulation of Rainwater Harvesting Design and Demand-Side Controls for Large Hospitals
Lawrence V. Fulton
Additional contact information
Lawrence V. Fulton: Department of Health Administration, Texas State University, San Marcos, TX 78666, USA
Sustainability, 2018, vol. 10, issue 5, 1-17
Abstract:
Inpatient health buildings in the United States are the most intensive users of water among large commercial buildings. Large facilities (greater than 1 million square feet) consume an average of 90 million gallons per building per year. The distribution and treatment of water imposes a significant electrical power demand, which may be the single largest energy requirement for various states. Supply and demand-side solutions are needed, particularly in arid and semi-arid regions where water is scarce. This study uses continuous simulations based on 71 years of historical data to estimate how rainwater harvesting systems and demand-side interventions (e.g., low-flow devices, xeriscaping) would offset the demand for externally-provided water sources in a semi-arid region. Simulations from time series models are used to generate alternative rainfall models to account for potential non-stationarity and volatility. Results demonstrate that hospital external water consumption might be reduced by approximately 25% using conservative assumptions and depending on the design of experiment parameters associated with rainfall capture area, building size, holding tank specifications, and conservation efforts.
Keywords: sustainability; rainwater; RWH; hospitals (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2071-1050/10/5/1659/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/5/1659/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:5:p:1659-:d:148159
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().