EconPapers    
Economics at your fingertips  
 

Transition of the Swiss Phosphorus System towards a Circular Economy—Part 2: Socio-Technical Scenarios

Michael Jedelhauser, Jonas Mehr and Claudia R. Binder
Additional contact information
Michael Jedelhauser: Department of Geography, LMU Munich, 80333 Munich, Germany
Jonas Mehr: Laboratory for Human-Environment Relations in Urban Systems HERUS, École Polytechnique Fédérale de Lausanne (EPFL), Urban Ecology and Sustainable Living, CH-1015 Lausanne, Switzerland
Claudia R. Binder: Laboratory for Human-Environment Relations in Urban Systems HERUS, École Polytechnique Fédérale de Lausanne (EPFL), Urban Ecology and Sustainable Living, CH-1015 Lausanne, Switzerland

Sustainability, 2018, vol. 10, issue 6, 1-19

Abstract: A transition towards a circular economy of phosphorus (P) in Switzerland is a multi-faceted challenge as P use is subject to a variety of influencing factors comprising policy interventions, consumption trends, or technological innovations on different spatial scales. Therefore, scenarios for P use that take into account both the social and the technical dimension of change are needed for investigating possible pathways of a transition towards more sustainable P futures. Drawing on the multi-level perspective of transition theory, we develop scenarios on the landscape level, i.e., a balanced and healthy human diet, on the regime level, i.e., P recovery from sewage sludge (ash) and meat and bone meal, and on the niche level, i.e., urine separation. Based on the P system of the year 2015, we assess the quantitative implications of the scenarios for the Swiss P system. While scenario 1 mainly affects the agricultural system by reducing the overall P throughput, scenario 2 significantly changes P use in waste management, because P losses to landfills and cement plants decrease and the production of secondary P increases. Scenario 3 shows little quantitative impact on the national P system. From a qualitative transition perspective, however, urine separation entails fundamental socio-technical shifts in the wastewater system, whereas P recovery from sewage sludge (ash) represents an incremental system adaptation. The combination of flow- and transition-oriented research provides more general insights into how a circular economy of P can be reached. Furthermore, the analysis of P recycling scenarios reveals that transition processes in Switzerland are embedded in a global resource economy. Thus, a sole focus on concepts of national P self-sufficiency and the reduction of Switzerland’s P import dependency tend to fall short when analysing the economisation of secondary P materials in the face of transnational resource flows and markets.

Keywords: phosphorus; Switzerland; scenario analysis; substance flow analysis; socio-technical transition; circular economy; human diets; recycling; sewage sludge; urine separation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/6/1980/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/6/1980/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:6:p:1980-:d:152185

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1980-:d:152185