EconPapers    
Economics at your fingertips  
 

Using Drones and 3D Modeling to Survey Tibetan Architectural Heritage: A Case Study with the Multi-Door Stupa

Zheng Sun and Yingying Zhang
Additional contact information
Zheng Sun: School of Architecture, Nanjing Tech University, Nanjing 211800, China
Yingying Zhang: Key Laboratory of Urban and Architectural Heritage Conservation (Southeast University), Ministry of Education, Nanjing 210096, China

Sustainability, 2018, vol. 10, issue 7, 1-14

Abstract: Tibet has an average altitude of 4900 m, a complex terrain, and unique climatic conditions. The technologies used to survey this country’s local architectural heritage must be portable, efficient, and versatile. Low-cost Unmanned Aerial Vehicles (UAVs) and Structure from Motion (SfM) algorithms can help satisfy these demands. Recent studies employing nadir images from low-cost UAVs and SfM algorithms have reported positive metric results (with centimeter-level accuracy) when modeling 2D objects (e.g., land, roofs, and facades). In Tibet, however, forming a complete 3D model of architectural heritage is highly preferable and doing so requires a camera network that can create nadir and oblique images with various baselines. This study compared the accuracies of surveying a Tibetan stupa using the UAV-SfM method compared with Ground Control Points (GCP) and Terrestrial Laser Scanning (TLS). The results indicated that the UAV-derived model is accurate enough for most surveying purposes (RMSE = 2.05 cm; 1/2000 of the stupa’s dimension). The accuracy and completeness of the 3D model allowed Historic Building Information Modeling (HBIM) and structural deformation analysis to also be undertaken. In addition, the stupa was integrated with geographic data (terrain and infrastructure) for visualization, management, and evaluation purposes at a larger scale. Considering the low cost, portability, and completeness offered by UAV and SfM, this tool offers promise for surveying Tibet’s architectural heritage.

Keywords: architectural heritage; Tibet; digital survey; UAV; SfM; point cloud (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/7/2259/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/7/2259/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:7:p:2259-:d:155426

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2259-:d:155426