EconPapers    
Economics at your fingertips  
 

Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation

Qian Guo and Zhenping Chen
Additional contact information
Qian Guo: School of Environment and Safety Engineering, University of South China, Hengyang 421001, Hunan, China
Zhenping Chen: School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China

Sustainability, 2018, vol. 10, issue 7, 1-12

Abstract: The Monte Carlo method has been widely used as a standard method to perform neutron transport simulations in reactor physics. In conventional Monte Carlo codes corresponding to the neutron transport tracking with ray-tracing method, the distances to material boundaries must be computed frequently when the neutron changes its kinetic energy or moving into new material regions to determine the neutron transport length. However, if the neutron’s mean free path length, to some extent, is greater than the macro size of the model, a huge amount of distances need to be computed. As a result, the computational efficiency of the neutron transport tracking will be degraded. An improved multi-regional delta-tracking method based on domain decomposition was introduced to solve this problem, in which the original heterogeneous model would be decomposed into many sub-regions and each sub-region was tracked using a local delta-tracking method. Consequently, the computational efficiency of the neutron transport tracking can be improved theoretically without the unnecessary distance calculations. The improved multi-regional delta-tracking method was incorporated into the MOSRT system, which is a multi-objective modeling and simulation platform for radiation transport system. Finally, the method was validated using the criticality benchmarks and its accuracy and efficiency were demonstrated in Monte Carlo criticality calculation. The results indicated that the new method was consistent with the conventional methods, but with a more competitive run-time performance.

Keywords: Monte Carlo; neutron tracking; multi-regional; delta-tracking; criticality calculation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/10/7/2272/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/7/2272/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:7:p:2272-:d:155619

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2272-:d:155619