Properties of Fired Bricks Incorporating TFT-LCD Waste Glass Powder with Reservoir Sediments
Chao-Wei Tang
Additional contact information
Chao-Wei Tang: Department of Civil Engineering & Geomatics, Cheng Shiu University, No. 840, Chengcing Rd., Niaosong District, Kaohsiung 83347, Taiwan
Sustainability, 2018, vol. 10, issue 7, 1-18
Abstract:
In view of increasing concerns over nonrenewable resource depletion and waste management, this study aimed to apply the Taguchi optimization technique to determine the process conditions for producing bricks by incorporating thin-film transition liquid crystal display (TFT-LCD) waste glass powder with reservoir sediments. An orthogonal array L 16 (4 5 ) was adopted, which consisted of five controllable four-level factors (i.e., cullet content, drying method, preheat time, sintering temperature, and error). Moreover, the analysis of variance method was used to explore the effects of the experimental factors on the density, water absorption, shrinkage ratio, loss on ignition, porosity, and compressive strength of the fired bricks. The microstructures of the fired specimens were investigated by scanning electron microscopy. Then, large-scale production techniques for fired bricks containing recycled TFT-LCD glass cullet and reservoir sediments were developed in a commercially available tunnel kiln. The test results showed that the structure of the fired specimen was loose at a sintering temperature ranging from 900 to 950 °C. However, the fired specimen showed a significant densification at the sintering temperature of 1050 °C. In addition, the Taguchi method was found to be a feasible approach for optimizing the process condition of bricks using recycled TFT-LCD glass cullet and reservoir sediments and it significantly reduced the number of tests. Further, the characteristics of fired bricks developed in the tunnel kiln were in compliance with Chinese National Standards class Ι building bricks criteria.
Keywords: reservoir sediments; cullet; brick; sintering; orthogonal array (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2071-1050/10/7/2503/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/7/2503/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:7:p:2503-:d:158428
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().