Terrestrial Vertebrate Biodiversity Loss under Future Global Land Use Change Scenarios
Abhishek Chaudhary and
Arne O. Mooers
Additional contact information
Abhishek Chaudhary: Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
Arne O. Mooers: Department of Biological Sciences and IRMACS, Simon Fraser University, Burnaby, BC V5A1S6, Canada
Sustainability, 2018, vol. 10, issue 8, 1-20
Abstract:
Efficient forward-looking mitigation measures are needed to halt the global biodiversity decline. These require spatially explicit scenarios of expected changes in multiple indicators of biodiversity under future socio-economic and environmental conditions. Here, we link six future (2050 and 2100) global gridded maps (0.25° × 0.25° resolution) available from the land use harmonization (LUH) database, representing alternative concentration pathways (RCP) and shared socio-economic pathways (SSPs), with the countryside species–area relationship model to project the future land use change driven rates of species extinctions and phylogenetic diversity loss (in million years) for mammals, birds, and amphibians in each of the 804 terrestrial ecoregions and 176 countries and compare them with the current (1900–2015) and past (850–1900) rates of biodiversity loss. Future land-use changes are projected to commit an additional 209–818 endemic species and 1190–4402 million years of evolutionary history to extinction by 2100 depending upon the scenario. These estimates are driven by land use change only and would likely be higher once the direct effects of climate change on species are included. Among the three taxa, highest diversity loss is projected for amphibians. We found that the most aggressive climate mitigation scenario (RCP2.6 SSP-1), representing a world shifting towards a radically more sustainable path, including increasing crop yields, reduced meat production, and reduced tropical deforestation coupled with high trade, projects the lowest land use change driven global biodiversity loss. The results show that hotspots of future biodiversity loss differ depending upon the scenario, taxon, and metric considered. Future extinctions could potentially be reduced if habitat preservation is incorporated into national development plans, especially for biodiverse, low-income countries such as Indonesia, Madagascar, Tanzania, Philippines, and The Democratic Republic of Congo that are otherwise projected to suffer a high number of land use change driven extinctions under all scenarios.
Keywords: biodiversity; evolutionary history; future pathways; habitat loss; land use; species extinctions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2071-1050/10/8/2764/pdf (application/pdf)
https://www.mdpi.com/2071-1050/10/8/2764/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:10:y:2018:i:8:p:2764-:d:162032
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().