EconPapers    
Economics at your fingertips  
 

A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China

Xiaobo Xue Romeiko
Additional contact information
Xiaobo Xue Romeiko: Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, NY 12144, USA

Sustainability, 2019, vol. 11, issue 10, 1-17

Abstract: Using reclaimed water from treated wastewater as an irrigation source is gaining popularity in arid and semi-arid areas. However, life cycle assessment studies, utilizing experimental data to analyze the environmental and health impacts of crops irrigated with reclaimed water, are lacking. This study presents the first comparative life cycle assessment of corn, soybean and wheat systems irrigated with groundwater and reclaimed water in Northern China. While the life cycle foreground inventory was based on a combination of experimental and modeling datasets, the life cycle background inventory was compiled with commercially available data packages augmented with Chinese electricity mix data. The life cycle impact analyses were based on the characterization factors from state-of-art life cycle impact assessment models. The analyses indicated that the life cycle global warming impacts of the crop systems ranged from 0.37 to 0.64 kg CO2-eq/kg grain, with reclaimed water irrigated soybean and ground water irrigated wheat exhibiting, respectively, the lowest and highest global warming impacts. Irrigation, farming equipment operation, on-field emissions and fertilizer production ranked as top contributors to the life cycle impacts for corn, soybean, and wheat. The comparative analyses of irrigation sources suggested that significant environmental tradeoffs existed. Replacing groundwater with reclaimed water as the irrigation source significantly decreased life cycle global warming, acidification, ozone depletion, smog formation, and respiratory impacts of corn, soybean and wheat systems. However, replacing groundwater with reclaimed water increased the life cycle noncancer impacts of those systems. Coordinating policies within the water–food–health nexus is required, in order to minimize the environmental tradeoffs, while maximizing the benefits of irrigation with reclaimed water.

Keywords: reclaimed water reuse; life cycle assessment; crop production; environmental impacts (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/10/2743/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/10/2743/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:10:p:2743-:d:230933

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2743-:d:230933