EconPapers    
Economics at your fingertips  
 

Semi-Continuous Anaerobic Digestion of Orange Peel Waste: Effect of Activated Carbon Addition and Alkaline Pretreatment on the Process

Paolo S. Calabrò, Filippo Fazzino, Adele Folino, Emilia Paone and Dimitrios Komilis
Additional contact information
Paolo S. Calabrò: Dipartimento di Ingegneria Civile, Università Mediterranea di Reggio Calabria, dell’Energia, dell’Ambiente e dei Materiali, Reggio Calabria IT 89122, Italy
Filippo Fazzino: Dipartimento di Ingegneria Civile, Università Mediterranea di Reggio Calabria, dell’Energia, dell’Ambiente e dei Materiali, Reggio Calabria IT 89122, Italy
Adele Folino: Dipartimento di Ingegneria Civile, Università Mediterranea di Reggio Calabria, dell’Energia, dell’Ambiente e dei Materiali, Reggio Calabria IT 89122, Italy
Emilia Paone: Dipartimento di Ingegneria Civile, Università Mediterranea di Reggio Calabria, dell’Energia, dell’Ambiente e dei Materiali, Reggio Calabria IT 89122, Italy
Dimitrios Komilis: Department of Environmental Engineering, Democritus University of Thrace, GR 67100 Xanthi, Greece

Sustainability, 2019, vol. 11, issue 12, 1-11

Abstract: The valorization of orange peel waste (OPW) is sought worldwide mainly via anaerobic digestion. A common problem encountered during the biological treatment is the seasonality of its production and the presence of d-Limonene. The latter is a typical anti-microbial compound. This work aims to evaluate the effect of the use of granular activated carbon (GAC) combined with alkaline pretreatment to enhance methane generation during semi-continuous anaerobic digestion of OPW. The experimental design consisted of two groups of experiments, A and B. Experiment A was designed to verify the maximum OPW loading and to assess the effect of pH and nutrients on the process. Experiment B was designed to study the effect of alkaline pretreatment alone and of alkaline pretreatment aided by biochar addition to the process. Apart from the methane yields, the d-Limonene contents were measured in all experiments. The preliminary results showed that OPW alkaline pretreatment after the addition of a moderate amount of GAC can render anaerobic digestion of OPW sustainable as long as the organic loading does not exceed 2 gVS·L −1 ·day −1 and nutrients are supplemented. The experiment in which GAC was added after alkaline pretreatment resulted in the highest methane yield and reactor stability.

Keywords: alkaline pretreatment; anaerobic digestion; d-Limonene; granular activated carbon; orange peel waste (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/12/3386/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/12/3386/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:12:p:3386-:d:241091

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3386-:d:241091