Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China
Xiuhong Wang and
Yili Zhang
Additional contact information
Xiuhong Wang: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Yili Zhang: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Sustainability, 2019, vol. 11, issue 13, 1-12
Abstract:
Study of changes in agrochemical residues on the Qinghai–Tibet Plateau is necessary for the agricultural green development of the fragile plateau and its downstream regions. The total agrochemical residue (TR) caused by main agrochemical inputs was estimated in the study area of Qinghai province and the Tibet Autonomous Region over 1995–2017 by using the emergy synthesis method. The total agrochemical residue was decomposed into the intensity factor, the structure factor, the productivity factor, and the labour factor by using the Logarithmic Mean Divisia Index (LMDI) decomposition method. The change in TR could be divided into four time periods, i.e., a rapidly increasing period during 1995–1998, a stable period during 1999–2004, a slowly increasing period during 2005–2011, and a fluctuant period during 2012–2017. The study area had a mean TR intensity in area (TRA) of 3.31 × 10 14 sej/ha, which was only 38.21% of that in China; however, the annual growth rate of TRA in the study area was 2.93%, higher than the rate of 1.91% in China over 1995–2017. The study area had a mean TR intensity in production (TRP) of 4.06 × 10 10 sej/CNY (Chinese Yuan), which was 71.05% of that in China; however, the annual decreasing rate of TRP in the study area was 0.95%, lower than the rate of 1.98% in China over 1995–2017. All the LMDI decomposed factors contributed to the TR increase during 1995–1998; the intensity factor, the structure factor, and the labour factor contributed to the TR decrease during 1999–2004; the structure factor and the productivity factor contributed to the TR increase during 2005–2011; and only the productivity factor contributed to the TR increase during 2012–2017. Compared with the whole country, the study area has more potential to reduce TR by improving agrochemical use efficiency, strengthening the recovery of plastic film residue, increasing organic agricultural materials, raising the efficiency of agricultural production, and accelerating the transfer of rural labours to secondary and tertiary industries.
Keywords: agrochemical residues; emergy synthesis; LMDI decomposition; agrochemical inputs; agricultural policies; the Qinghai–Tibet Plateau (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/13/3652/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/13/3652/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:13:p:3652-:d:245206
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().