EconPapers    
Economics at your fingertips  
 

Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea

Bonggeun Song and Kyunghun Park
Additional contact information
Bonggeun Song: Institute of Industrial Technology, Changwon National University, 20 Changwondaehak-ro Uichang-gu Changwon-si, Gyeongsangnam-do 641-773, Korea
Kyunghun Park: School of Civil, Environmental and Chemical Engineering, Changwon National University, 20 Changwondaehak-ro Uichang-gu Changwon-si, Gyeongsangnam-do 641-773, Korea

Sustainability, 2019, vol. 11, issue 14, 1-21

Abstract: Spatiotemporal air and land surface temperature (LST) characteristics were analyzed based on urban spatial patterns for Changwon City, South Korea. Twelve ASTER (Advanced spaceborne thermal emission and reflection radiometer) Thermal infrared radiance (TIR) images during the daytime and nighttime from June to September, 2012–2014 were used for LST analysis. Air temperature was measured at five meteorological stations. The landcover type, elevation, and location of the meteorological measurement stations were the spatial patterns. The differences among the mean LST for each landcover material were the maximum of 8 °C and 1 °C during the daytime and nighttime, respectively. The LST decreased with increasing built-up area ratio, most prominently in July, but less so with increasing forest area for the same area ratios. The changes of urban temperature according to the spatial pattern were found to be different in each period, and there were some differences from previous studies. This is because the thermal characteristics differ depending on the geographical location, climatic conditions, and building environment of the cities. Therefore, to mitigate the urban heat island continuously, it should be applied to urban planning considering the relationship between spatial patterns and urban temperature, and the urban environment should be considered rather than directly using the results of previous studies.

Keywords: urban heat island; remote sensing; GIS; ASTER satellite imagery; landcover; land surface temperature (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/14/3777/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/14/3777/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:14:p:3777-:d:247116

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3777-:d:247116