EconPapers    
Economics at your fingertips  
 

Rapid Retrofit of Reinforced Concrete Frames after Progressive Collapse to Increase Sustainability

Shuang Li, Sidi Shan, Haiyu Zhang and Yi Li
Additional contact information
Shuang Li: Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
Sidi Shan: School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Haiyu Zhang: Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
Yi Li: The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Sustainability, 2019, vol. 11, issue 15, 1-21

Abstract: A structural progressive collapse is usually a local failure, in which the damage is concentrated at beams that bridge the removal column and the column itself. In many cases, retrofitting the damaged structure is more economical and more sustainable than reconstructing the entire structure. A progressive collapse test of a 1/3 scale, four-bay by two-story reinforced concrete (RC) frame was conducted, after which the structure was retrofitted with carbon fiber reinforced polymer (CFRP) wraps and retested. The center column in the first story was removed and the frame was pushed down quasistatically under displacement control to investigate the progressive collapse performances of the retrofitted RC frame. The test results were represented systematically at different areas in terms of the resistance forces, crack developments, and local and global failure modes. Numerical models were built to verify the test frame before and after the retrofitting. A design method was proposed to retrofit an RC frame using CFRP wraps after a progressive collapse. The test frame was redesigned to improve the retrofitting and used as an example to demonstrate the rationality of the proposed retrofit design method. The results indicated that the proposed retrofitting technology rapidly restored the frame structure to its original capacity before the progressive collapse occurred, whilst consistently satisfying the priorities of being economical and sustainable.

Keywords: RC frame; CFRP wraps; progressive collapse; rapid retrofit; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/15/4195/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/15/4195/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:15:p:4195-:d:254425

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4195-:d:254425