EconPapers    
Economics at your fingertips  
 

Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China

Kui Cai, Chang Li, Zefeng Song, Xin Gao and Moxin Wu
Additional contact information
Kui Cai: Institute of Geological Survey, Hebei GEO University, Shijiazhuang 050031, China
Chang Li: School of Business Administration, Wonkwang University, Jeonbuk 54538, Korea
Zefeng Song: Institute of Resources and Environmental Engineering, Hebei GEO University, Shijiazhuang 050031, China
Xin Gao: Business School, Hohai University, Nanjing 211100, China
Moxin Wu: Department of Physiology, School of Medicine, Wonkwang University, Jeonbuk 54538, Korea

Sustainability, 2019, vol. 11, issue 19, 1-22

Abstract: The high concentrations of trace elements in the environment, especially the carcinogenic elements Cr, Cd, and As, in populated areas can lead to an increased non-carcinogenic risk and carcinogenic risk in humans via the effective exposure pathways (inhalation and dermal contact). In this study, the concentrations of the trace elements Cd, Cr, and As in four media were comprehensively evaluated by collecting samples from atmospheric precipitates (A), wheat (W), soil (S), and groundwater (G) in the agricultural plain. This study not only considers the health risk level, but also focuses on the relationship between soil properties and the soil–wheat system. First, according to the results of the analysis, the concentration of carcinogenic elements in atmospheric precipitates was higher than that in other media. The sequence follows the order A > S > W > G. Moreover, the input flux of A was at a relatively higher level (determined via an input flux calculation) than other farming areas. Second, the pollution of Cr, Cd, and As in A and S were analyzed using the geoaccumulation method, and the level of Cd reached mild to moderate pollution. In addition, it was found that the bioaccumulation factors ( BAF s) of Cd were much higher than those of As and Cr in the soil–wheat system. Furthermore, it was found that the negative relationship between BAF s and pH, CEC (cation exchange capacity), Corg (soil organic carbon), and clay was significant. Lastly, the hazard quotient (HQ) of the non-carcinogenic risk and carcinogenic risk (CR) of the three elements in multiple media were calculated using the health risk model. The HQ results showed that the total non-carcinogenic risk index (HI) of Cd, As, and Cr in the multiple-media did not exceed the risk limit (1.00), and there was no significant risk to the locally exposed population. However, the total carcinogenic risk index (TCR) indicated that the risk index of Cr, As and Cd in multiple media exceeded the safety index range (≈10 −6 –10 −4 ), and the three elements posed a significant carcinogenic risk to local residents via the main pathways. In terms of individual elements, the risk of cancer was highest via the ingestion of the carcinogenic element Cd in G and W.

Keywords: multiple media; soil properties; bioaccumulation factors; carcinogenic risk; health risk model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/19/5208/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/19/5208/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:19:p:5208-:d:269870

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5208-:d:269870