EconPapers    
Economics at your fingertips  
 

Evaluation of the Leachability of Contaminations of Fly Ash and Bottom Ash from the Combustion of Solid Municipal Waste before and after Stabilization Process

Monika Czop and Beata Łaźniewska-Piekarczyk
Additional contact information
Monika Czop: Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Beata Łaźniewska-Piekarczyk: Department of Building Materials and Process Engineering, Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland

Sustainability, 2019, vol. 11, issue 19, 1-16

Abstract: The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.

Keywords: municipal solid waste; hazardous waste; minimization; utilization; immobilization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/19/5384/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/19/5384/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:19:p:5384-:d:271913

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5384-:d:271913