EconPapers    
Economics at your fingertips  
 

Uncertainty of Energy and Economic Performance of Manual Solar Shades in Hot Summer and Cold Winter Regions of China

Jian Yao and Rongyue Zheng
Additional contact information
Jian Yao: Department of Architecture, Ningbo University, Ningbo 315211, China
Rongyue Zheng: Department of Civil Engineering, Ningbo University, Ningbo 315211, China

Sustainability, 2019, vol. 11, issue 20, 1-19

Abstract: Occupant behavior is recognized as a major source of discrepancy between simulated and actual energy consumption. This study investigates the uncertainty of energy and economic performance of manual solar shades for the south facade. A developed stochastic model for manual solar shades based on a discrete-time Markov chain method was constructed in Building Controls Virtual Test Bed (BCVTB) for co-simulation with EnergyPlus. The stochastic shade model was compared with deterministic models concerning energy savings potential and life cycle economic performance at different building scales (i.e., from a single room to a whole building). The results show that annual energy uncertainty, due to occupant behavior, on manual shades can be neglected at the building level, whereas for sizing heating equipment, energy uncertainty should be considered. The payback period for manual shades is about 10 years and, in general, a larger building has a higher economic performance. Comparative analysis shows that there is a relatively big performance overestimation or underestimation by commonly used deterministic models in building simulation tools, and thus may lead to a biased economic analysis or even an inappropriate design decision when comparing different energy-saving measures.

Keywords: manual solar shades; uncertainty; energy performance; economic performance; occupant behavior (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/20/5711/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/20/5711/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:20:p:5711-:d:276951

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5711-:d:276951