EconPapers    
Economics at your fingertips  
 

Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters

Umut Hasan, Mamat Sawut and Shuisen Chen
Additional contact information
Umut Hasan: College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China
Mamat Sawut: College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China
Shuisen Chen: Guangzhou Institute of Geography, Guangzhou 510070, China

Sustainability, 2019, vol. 11, issue 23, 1-11

Abstract: The leaf area index (LAI) is not only an important parameter for monitoring crop growth, but also an important input parameter for crop yield prediction models and hydrological and climatic models. Several studies have recently been conducted to estimate crop LAI using unmanned aerial vehicle (UAV) multispectral and hyperspectral data. However, there are few studies on estimating the LAI of winter wheat using unmanned aerial vehicle (UAV) RGB images. In this study, we estimated the LAI of winter wheat at the jointing stage on simple farmland in Xinjiang, China, using parameters derived from UAV RGB images. According to gray correlation analysis, UAV RGB-image parameters such as the Visible Atmospherically Resistant Index (VARI), the Red Green Blue Vegetation Index (RGBVI), the Digital Number (DN) of Blue Channel (B) and the Green Leaf Algorithm (GLA) were selected to develop models for estimating the LAI of winter wheat. The results showed that it is feasible to use UAV RGB images for inverting and mapping the LAI of winter wheat at the jointing stage on the field scale, and the partial least squares regression (PLSR) model based on the VARI, RGBVI, B and GLA had the best prediction accuracy (R 2 = 0.776, root mean square error (RMSE) = 0.468, residual prediction deviation (RPD) = 1.838) among all the regression models. To conclude, UAV RGB images not only have great potential in estimating the LAI of winter wheat, but also can provide more reliable and accurate data for precision agriculture management.

Keywords: leaf area index; jointing stage; UAV; grey correlation analysis; vegetation indices (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/23/6829/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/23/6829/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:23:p:6829-:d:293039

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6829-:d:293039