EconPapers    
Economics at your fingertips  
 

Failure Analysis of the Water Supply Network in the Aspect of Climate Changes on the Example of the Central and Eastern Europe Region

Jakub Żywiec, Izabela Piegdoń and Barbara Tchórzewska-Cieślak
Additional contact information
Jakub Żywiec: Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Izabela Piegdoń: Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Barbara Tchórzewska-Cieślak: Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland

Sustainability, 2019, vol. 11, issue 24, 1-16

Abstract: The consequences of climate changes are felt by society every day. A sudden increase or decrease in air temperature, increasingly frequent, extreme weather phenomena can cause enormous economic damage to countries and cities. The occurrence of random weather phenomena and their negative impact on technical infrastructure nowadays are the basic problem related to ensuring the safety of the functioning of each system. Climate changes and significant air temperature amplitudes have a direct impact on the functioning of the critical infrastructure of cities, which includes collective water supply systems (CWSS). The paper presents the impact of climate change on the failure of a water supply network. Correlation between failure rate and air temperature was determined. This was used to determine the number of failures for the near 2036–2050 and distant 2086–2100 future in terms of climate change (temperature increase). The results confirm the thesis known from the literature that the failure rate decreases as the temperature increases. For forecasted periods as a result of temperature rise due to climate change, the reduction of the number of water pipe failures is expected in the range of 1.22% to 2.35% for the 2036–2050 period and from 2.96% to 8.66% for the 2086–2100 period, depending on the development of Representative CO 2 Concentration Scenarios (RCP). The decrease in the total number of failures will have an impact on the increase in the reliability and safety of water supply to consumers.

Keywords: climate change; failure rate; reliability; water supply system (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/24/6886/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/24/6886/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:24:p:6886-:d:293938

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6886-:d:293938