EconPapers    
Economics at your fingertips  
 

Simulation of Drainage Capacity in a Coastal Nuclear Power Plant under Extreme Rainfall and Tropical Storm

Shuangling Wang, Wanshun Zhang and Fajin Chen
Additional contact information
Shuangling Wang: Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China
Wanshun Zhang: School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
Fajin Chen: Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China

Sustainability, 2019, vol. 11, issue 3, 1-18

Abstract: To ensure the safety of coastal nuclear power plants, accurately simulating water depth due to flooding resulting from heavy rainfall and tropical storms is important. In this paper, a combined model is developed to analyze and simulate the drainage capacity in a coastal nuclear power plant under the combined action of extreme rainfall and wave overtopping. The combined model consist of a surface two-dimensional flood-routing model, a pipe network model, and an offshore wave model. The method of predictive correction calculation is adopted to calculate the node return flow. The inundated water depth varying with time for different design rainstorm return periods ( p = 0.1 and 1%) was simulated and analyzed by the combined model. The maximum inundated water depth is calculated for the important entrances of the workshop. The model was validated and calibrated with the data of the rainfall, outflow discharge, and flow velocity measured on 23 June 2016 in plant. Modeling indicates that the simulated depths are consistent with the observed depths. The results show that the water depths in the left and right of the nuclear power plant are 0.2–0.4 m and 0.3–0.8 m, respectively. The water depth increases of Monitoring Point 22 are the largest in different design rainstorm return periods ( p = 0.1 and 1%), which increase by 16% for a rainstorm once every thousand years compared to events occurring once in one hundred years. The main factor influencing water accumulation is wave overtopping, and the seawall, revetments, and pipe system play an important role in decreasing the inundated water depth. Through scientific analysis, a certain decision-making basis has been provided for flood disaster management and a certain security guarantee has also been provided for regional sustainable development.

Keywords: surface runoff; drainage pipe network; numerical simulation; drainage capacity; the nuclear power plant (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/3/642/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/3/642/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:3:p:642-:d:200891

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:642-:d:200891