Natural and Human-Induced Drivers of Groundwater Sustainability: A Case Study of the Mangyeong River Basin in Korea
Jae Min Lee,
Eun Hye Kwon and
Nam C. Woo
Additional contact information
Jae Min Lee: Institute of Natural Sciences, Yonsei University, Seoul 03722, Korea
Eun Hye Kwon: Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea
Nam C. Woo: Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea
Sustainability, 2019, vol. 11, issue 5, 1-21
Abstract:
The sustainability of rural areas depends on the availability of water resources. The Mangyeong River Basin (MRB) in Korea faces a water supply shortage for agriculture and industry. Based on 11-year (2005–2015) precipitation and groundwater monitoring data, groundwater sustainability was evaluated in terms of natural and man-made factors and their spatio-temporal variations. A precipitation time-series revealed a declining trend, but there were different seasonal trends between wet and dry periods, with declining and rising trends, respectively. Groundwater hydrographs from five national groundwater monitoring wells showed temporal variations. Groundwater wells located in downstream areas showed both recharge from upgradient areas and local man-made impacts (e.g. from pumping), resulting in an ambiguous relationship between precipitation and water levels. However, other monitoring wells in the upstream areas displayed water level responses to precipitation events, with a declining trend. Using the standardized precipitation index at a time scale of 12 months (SPI-12) and the standardized groundwater level anomaly, meteorological and groundwater drought conditions were compared to infer the relationship between precipitation deficit and groundwater shortage in the aquifer. The SPI results indicated severely dry to extremely dry conditions during 2008–2009 and 2015. However, the standardized groundwater level anomaly showed various drought conditions for groundwater, which were dependent on the site-specific hydrogeological characteristics. Finally, groundwater sustainability was assessed using water budget modelling and water quality data. Presently, if groundwater is used above 39.2% of the recharge value in the MRB, groundwater drought conditions occur throughout the basin. Considering water quality issues, with nitrate being elevated above the natural background, this critical abstraction value becomes 28.4%. Consequently, in the MRB, sustainable groundwater management should embrace both natural and human-induced factors to regulate over-exploitation and prevent contamination.
Keywords: Groundwater resources; water level; recharge; abstraction; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/5/1486/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/5/1486/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:5:p:1486-:d:212901
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().