EconPapers    
Economics at your fingertips  
 

Response of Nitrogen Losses to Excessive Nitrogen Fertilizer Application in Intensive Greenhouse Vegetable Production

Hui Zhao, Xuyong Li and Yan Jiang
Additional contact information
Hui Zhao: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Xuyong Li: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Yan Jiang: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Sustainability, 2019, vol. 11, issue 6, 1-15

Abstract: Excessive nitrogen fertilizer application in greenhouse vegetable production (GVP) is of scientific and public concern because of its significance to international environmental sustainability. We conducted a meta-analysis using 1174 paired observations from 69 publications on the effects of nitrogen fertilizer application and reducing nitrogen fertilizer application on the nitrogen losses on a broad scale. We found that the increase in nitrogen loss is much higher than that in production gain caused by excessive application of nitrogen fertilizer: nitrate leaching (+187.5%), ammonium leaching (+28.1%), total nitrogen leaching (+217.0%), nitrous oxide emission (+202.0%), ammonia emission (+176.4%), nitric oxide emission (+543.3%), yield (+35.7%) and nitrogen uptake (+24.5%). Environmental variables respond nonlinearly to nitrogen fertilizer application, with severe nitrate leaching and nitrous oxide emission when the application rate exceeds 570 kg N/ha and 733 kg/N, respectively. The effect of nitrogen fertilizer on yield growth decreases when the application rate exceeds 302 kg N/ha. Appropriate reduction in nitrogen fertilizer application rate substantially mitigates the environmental cost, for example, decreasing nitrate leaching (−32.4%), ammonium leaching (−6.5%), total nitrogen leaching (−37.3%), ammonia emission (−28.4%), nitrous oxide emission (−38.6%) and nitric oxide emission (−8.0%), while it has no significant effect on the nitrogen uptake and yield.

Keywords: environmental pollution; nitrate leaching; nitrous oxide emission; threshold; meta-analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/6/1513/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/6/1513/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:6:p:1513-:d:213397

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1513-:d:213397