A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops
Ved Parkash and
Sukhbir Singh
Additional contact information
Ved Parkash: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
Sukhbir Singh: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
Sustainability, 2020, vol. 12, issue 10, 1-28
Abstract:
Area under vegetable cultivation is expanding in arid and semi-arid regions of the world to meet the nutritional requirements of an ever-growing population. However, water scarcity in these areas is limiting vegetable productivity. New water-conserving irrigation management practices are being implemented in these areas. Under these irrigation management practices, crops are frequently exposed to some extent of water stress. Vegetables are highly sensitive to water stress. For the successful implementation of new irrigation practices in vegetable crops, it is of immense importance to determine the threshold water deficit level which will not have a detrimental effect on plant growth and yield. Along with this, plant response and adaptation mechanisms to new irrigation practices need to be understood for the successful implementation of new irrigation practices. To understand this, water stress indicators that are highly responsive to water stress; and that can help in early detection of water stress need to be identified for vegetable crops. Plant-based water stress indicators are quite effective in determining the water stress level in plants because they take into account the cumulative effect of water stress due to declining soil moisture status and increased evaporative demand of the atmosphere while determining the water stress level in plant. Water stress quantification using plant-based approaches involves direct measurements of several aspects of plant water status and indirect measurements of plant processes which are highly sensitive to water deficit. In this article, a number of plant-based water stress indicators were critically reviewed for (1) their efficacy to determine the level of water stress, (2) their potential to predict the yield of a crop as affected by different water-deficit levels and (3) their suitability for irrigation scheduling in vegetable crops.
Keywords: water stress indicator; deficit irrigation; vegetables; plant-based approaches; threshold water stress (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/10/3945/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/10/3945/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:10:p:3945-:d:356809
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().