EconPapers    
Economics at your fingertips  
 

Early Prediction of a Team Performance in the Initial Assessment Phases of a Software Project for Sustainable Software Engineering Education

Mehwish Naseer, Wu Zhang and Wenhao Zhu
Additional contact information
Mehwish Naseer: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Wu Zhang: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Wenhao Zhu: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Sustainability, 2020, vol. 12, issue 11, 1-17

Abstract: Software engineering is a competitive field in education and practice. Software projects are key elements of software engineering courses. Software projects feature a fusion of process and product. The process reflects the methodology of performing the overall software engineering practice. The software product is the final product produced by applying the process. Like any other academic domain, an early evaluation of the software product being developed is vital to identify the at-risk teams for sustainable education in software engineering. Guidance and instructor attention can help overcome the confusion and difficulties of low performing teams. This study proposed a hybrid approach of information gain feature selection with a J48 decision tree to predict the earliest possible phase for final performance prediction. The proposed technique was compared with the state-of-the-art machine learning (ML) classifiers, naïve Bayes (NB), artificial neural network (ANN), logistic regression (LR), simple logistic regression (SLR), repeated incremental pruning to produce error reduction (RIPPER), and sequential minimal optimization (SMO). The goal of this process is to predict the teams expected to obtain a below-average grade in software product development. The proposed technique outperforms others in the prediction of low performing teams at an early assessment stage. The proposed J48-based technique outperforms others by making 89% correct predictions.

Keywords: sustainable education; educational data mining; software engineering; machine learning; predictive modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/11/4663/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/11/4663/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:11:p:4663-:d:368495

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4663-:d:368495