A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler
Dahye Kim,
Kyung-Tae Kim and
Young-Kwon Park
Additional contact information
Dahye Kim: School of Environmental Engineering, University of Seoul, Seoul 02504, Korea
Kyung-Tae Kim: Department of Business Administration, Kangwon National University, Chuncheon 24341, Korea
Young-Kwon Park: School of Environmental Engineering, University of Seoul, Seoul 02504, Korea
Sustainability, 2020, vol. 12, issue 12, 1-11
Abstract:
The purpose of this study is to compare the effect of a reduction in greenhouse gas (GHG) emissions between the combined heat and power (CHP) plant and boiler, which became the main energy-generating facilities of “anaerobic digestion” (AD) biogas produced in Korea, and analyze the GHG emissions in a life cycle. Full-scale data from two Korean “wastewater treatment plants” (WWTPs), which operated boilers and CHP plants fueled by biogas, were used in order to estimate the reduction potential of GHG emissions based on a “life cycle assessment” (LCA) approach. The GHG emissions of biogas energy facilities were divided into pre-manufacturing stages, production stages, pretreatment stages, and combustion stages, and the GHG emissions by stages were calculated by dividing them into Scope1, Scope2, and Scope3. Based on the calculated reduction intensity, a comparison of GHG reduction effects was made by assuming a scenario in which the amount of biogas produced at domestic sewage treatment plants used for boiler heating is replaced by a CHP plant. Four different scenarios for utilizing biogas are considered based on the GHG emission potential of each utilization plant. The biggest reduction was in the scenario of using all of the biogas in CHP plants and heating the anaerobic digester through district heating. GHG emissions in a life cycle were slightly higher in boilers than in CHP plants because GHG emissions generated by pre-treatment facilities were smaller than other emissions, and lower Scope2 emissions in CHP plants were due to their own use of electricity produced. It was confirmed that the CHP plant using biogas is superior to the boiler in terms of GHG reduction in a life cycle.
Keywords: biogas; biogas utilization; GHG emissions; CHP (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/12/5144/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/12/5144/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:12:p:5144-:d:375635
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().