EconPapers    
Economics at your fingertips  
 

Experimental and Numerical Evaluation of Clinch Connections of Thin-Walled Building Structures

Jakub Flodr, Petr Lehner and Martin Krejsa
Additional contact information
Jakub Flodr: Department of Structural Mechanics, Faculty of Civil Engineering, VSB-Technical University of Ostrava, Ludvíka Podéště 1875/17, 708 33 Ostrava-Poruba, Czech Republic
Petr Lehner: Department of Structural Mechanics, Faculty of Civil Engineering, VSB-Technical University of Ostrava, Ludvíka Podéště 1875/17, 708 33 Ostrava-Poruba, Czech Republic
Martin Krejsa: Department of Structural Mechanics, Faculty of Civil Engineering, VSB-Technical University of Ostrava, Ludvíka Podéště 1875/17, 708 33 Ostrava-Poruba, Czech Republic

Sustainability, 2020, vol. 12, issue 14, 1-10

Abstract: The high energy intensity of industry and the importance of natural resources are currently much-discussed topics. Light steel structures made from thin-walled cold-formed (TWCF) profiles play an important role in this discussion because their increased use has significantly reduced the consumption of conventional structural steel. New, more efficient technologies for connections of the TWCF structures, such as punch riveting and clinching, are being developed, which are advantageous in terms of cost and time. An innovative way to obtain the physical properties of a clinch joint and instructions for a detailed reliability assessment of this type of connection is described in this article. The resulting behaviour of the numerical model based on the tensile test of the basic material and suitable boundary conditions was validated by a physical experiment. The computational procedures presented in the article will facilitate the design of steel structures in the field of global static analysis of TWCF light steel structures because the described methods can be generalised and applied in commonly available commercial software. Two variants of the model were prepared and evaluated—with and without slippage in the press jaws. Comparison of the numerical model and experimental results shows compliance.

Keywords: clinching; numerical modelling; tensile test; thin-walled section; experimental verification (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/14/5691/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/14/5691/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:14:p:5691-:d:384886

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5691-:d:384886