Validation of Francis–Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar, L.) and Anadromous Brown Trout (Salmo Trutta, L.) Passing High Head Turbines
Linda Vikström,
Kjell Leonardsson,
Johan Leander,
Samuel Shry,
Olle Calles and
Gustav Hellström
Additional contact information
Linda Vikström: Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Science, Umeå, Skogsmarksgränd, 907 36 Umeå, Sweden
Kjell Leonardsson: Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Science, Umeå, Skogsmarksgränd, 907 36 Umeå, Sweden
Johan Leander: Department of Ecology and Environmental Science, Umeå University, Umeå, Linnaeus väg 6, 901 87 Umeå, Sweden
Samuel Shry: River Ecology and Management Research Group RivEM, Department of Environmental and Life Sciences, Karlstad University, S-651 88 Karlstad, Sweden
Olle Calles: River Ecology and Management Research Group RivEM, Department of Environmental and Life Sciences, Karlstad University, S-651 88 Karlstad, Sweden
Gustav Hellström: Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Science, Umeå, Skogsmarksgränd, 907 36 Umeå, Sweden
Sustainability, 2020, vol. 12, issue 16, 1-13
Abstract:
The negative effects of hydroelectric power (HEP) on salmonid populations has long been recognized and studied. Downstream passage through turbines may potentially constitute a significant source of mortality for both juvenile and adult fish in regulated rivers. Numerical models have been developed to calculate turbine passage mortality based on the probability of collision with the turbine blades, but although widely used in management and conservation, their performance is rarely validated in terms of the accuracy and bias of the mortality estimates. In this study, we evaluated commonly used blade strike models for Kaplan and Francis turbines by comparing model predictions with observed passage mortalities for juvenile 13–27 cm and adult 52–94 cm Atlantic salmon ( Salmo salar , L.) and anadromous brown trout ( Salmo trutta , L.) acquired by acoustic telemetry. Predictions made for juveniles aligned closer with observed mortality for both Kaplan and Francis turbines (within 1–3% percentage points). However, the model severely underestimated the mortality of adult fish passing through Francis turbines, with up to 50% percentage points difference between predicted and observed mortalities. Furthermore, the model did not capture a clear negative correlation between mortality and discharge observed for salmon between 50–60 cm (grilse). We concluded that blade strike models are a useful tool for quantifying passage mortality for salmonid smolts passing large, high-head turbines, but that the same models should be used with care when trying to estimate the passage mortality of kelts in iteroparous populations. We also concluded that the major cause of passage mortality for juveniles is injury by collision with the turbine blade, but that other factors seem to contribute substantially to the passage mortality of kelts. Our study reports low mortality for smolts up to 27 cm passing through Kaplan and Francis turbines (0–12%), but high mortality for salmon over 50 cm passing though Francis turbines (56–81%).
Keywords: modeling; validation; blade strike; kelt; turbine passage; animal movement and migrations; animal conservation; hydropower sustainability; ecohydraulics; Francis turbines (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/16/6384/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/16/6384/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:16:p:6384-:d:396096
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().